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Abstract When building a model, a modeller ensures that the medel formulation is consistent with the
scale of the process being modelled and the problem addressed by the model. A generic modeliing
environment such as the Open Modelling Engine can contain a library of model components that may
be conaected to form a systern model, enabling rapid model building. The library would include
models that represent processes at different scales, so the modelling system should be capable of
representing the appropriate scale range for each model, identifying the scale and units of various input
data and enforcing consistency between data and models and between connected model components.
This paper reviews the issues of spatial and temporal scale in modelling and suggests mechanisms by
which scale and scaling operations can be included in a generic modelling environment such as the
Open Modelling Engine.

1. THE OPEN MODELLING ENGINE volume) and extent (Bléschl and Sivapalan,
CONTEXT 1995).

The Open Modeiling Engine (OME) (Reed et = Spacing is the distance or time between
al.,, 1997) is a generic modelling system the measurements. For environmental data
oriented towards environmental modelling this ranges from seconds to years and from
applications at the management level. It centimetres to many kilometres, depending
features a visual model building environment on the quantity being measured and the
using a library of pre-defined model purpose of the measurements.

algorithms, so models can be constructed

rapidly. from.building blocks. Models.can also ... ..o .Support is the-time- or-area-or-volume over
be built from scraich using pl'QCE(iUTElE COdE, which the measurement in[egrates the
but the emphasis is on re-useable components, quantity being measured, and is determined
by the characteristics of the measurement
process. The temporal support of most
measurements is a few seconds, but some
measurements integrate over time — for
example, a simple rain gauge accumulates

Such a system requires a degree of inteliigence
to prevent accidental misuse by linking
incompatible model components or mixing
physical units. A more subtle problem is the

possibility of using data or intermediate model rainfall between readings. The spatial
results at inappropriate scales. The purpose of support of most measurements is  also
this paper is to discuss the need for small, amounting © a few square
representing the scale of temporal and spatial centimetres but again there are exceptions —

data; to suggest some POSSib;E mechanisms for FCITl0t€I}’ sensed Emagery accumulates

representing and enforcing the consistency of mformation over the area of each of its

units and scale: and to suggest tools for pixels which can be as large as | km for

sensibly manipulating the scale of data. AVHRR for example. Some measurements
represent spatially or temporally averaged

2. DATA AND SCALE quantities, such as catchment runoff,

2.1. Scales of Observation e  Extent is the duration or area covered by

L the set of measurements.
All environmental data are measured or

interpreted at a particular scale. The scale of a The degree to which a set of observations
sertes . of observations can be described in. adequately . captures. .the temporal or  spatial . .
terms of their spacing, support (ar integration variation of the quantity being measured is

determined by the relationships between the
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spacing and support of the measurements and
the coherence of the quantity being sampled.
The spacing is typically much larger than the
support, meaning that most of the area or time
remains unsampled and some form of smooth
behaviour  is  assumed  between  the
measurements {aithough this is not the case for
remote  sensed data, for example). The
measurements are effectively scaled up from
the support scale to the spacing scale. If the
gquantify ig coherent within the measurement
spacing so that there is relatively little
variation  between  measurements, the
measurements  will accurately retlect the
structure of variation of the quantity. However
it there is considerable variation within the
micasurement quantity  is
incoherent within the measurement spacing),
the structure of varation will not be captured
by the measurements.

Ly ve T o P
spacing {ine
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Two contrasting examples are air temperature
and  soil  hydraulic  conductivity. Both
measurements have small support, integrating
the value of the measured property over an
area of a few square centimetres, or perhaps as
large as one square metre. The spatial extents
represented by those two measurements are
very different because air temperature has
much less spatial variability — it is ccherent
over larger length scales -~ than soil hydraulic
conductivity. The air temperature measurement
might adequately represent the conditions over
several kilometres (apart from elevation

effects), _while the _hydraulic . conductivity.

measurement  will probably represent the
conditions only within a few metres of the
measurement point {eg. Loague and Gander,
19%0). - To adequately  capture the complex
spatial - structure  of hydraulic conductivity
requires closely spaced samples.

Air temperature and wind speed provide a
temporal example of a similar flavour: both
measurements have a temporal support of a
few seconds, but the air temperature
measurement s more  likely to  be
representative of the conditions over a2 period
of one hour. There can be large rapid
fluctuations in wind speed so that a single
measurement over a few seconds might be
very different to the average speed over one
hour — wind speed facks coherence at time
scales of one hour.

2.2. Matching Scales
_ The preceding observations demonstrate that it

is important to match the scale of observation
of a data set with the use to which it is put.
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Models that use environmental data as
parameters should use data derived or collecied
at the appropriate temporal and spatial scale.
Taking data measured at one scale and
applying 1t at a different scale can cause
serious errors in model predictions.

As an example, if a process model reguires
hourly rainfall rate as a forcing variable, but
only monthly rainfall was available, it would
be foclish to use the monthly rainfall divided
by the length of each month to determine
hourly rainfall rates. The reasson this is
inappropriate is that the processes driven by
rainfail are non-linear, so a short period of high
intensity rain preduces a very different result
1o a iong period of low intensity rain, even
though the rotal rainfall amount is the same.
This non-linearity is a major source of scaling
problems.

Another source of scaling problems is internal
feedbacks within a process, such as in a
temporal model whose state at one time step
influences the state at the following time sten,
a very common sitwation, These linkages
correspond  to  processes  operating  at  a
particular temporal scale; if the model was
naively used at a different temporal scale (e.g.
on a monthly instead of daily basis) the
representation  of these internal feedbacks
would be incorrect. This is because, at short
time scales, the state of the system does not
change much from one time step to the next, so

using..the..state-at-the- previous- time-step-ta-

control behaviour at the current time step is
guite accurate, At fonger time steps, the state
cen change substantially from one time step to
the next so the use of information from a
previous #ime step is invalid. In some cases,
changing parameter values can be used to
compensate for the change in scale, but in
other cases the model structure must change to
reflect the different processes operating at the
different scale. For example, a daily rainfali-
runoff maodel has a different structure to a
monthly model.

Corresponding spatial examples are
topographic slope and a spatial water balance
model. Topographic slope determined from 10
m resolution spatial data and | km resolution
data are not the same thing, and cannot be
interchanged (Lewis, 1995) because they do
not influence environmental processes in the
same way. In a spatial water bafance model,
spatial interactions and patterns at 10 m

resolution are of a different character to those |

at | km resolution (Quinn et al., 1991).
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Figure t The effect of sampling 1s
dependent on process and observation
scales (after Bloschl and Sivapalan, 1905),

Mismatches  between  spatial  scales  are
common and difficuit to avoid. Seil data are a
common source of scale problems because
modelling  of soil-dependent  processes  is
frequently conducted at resolutions of 100 m
or finer over broad spatial areas, with only a
broad-scale soil map or a few measurements to
define soil properties. Compoundiag this
problem is the large variation in soil properties
over small distances (a few metres).

Figure | depicts the effect of sampling when
the process and observation scales differ, with
the extent and the spacing of the data set
shown. Varation at broader scales than the
extent of the data appears as a trend in the data;
varfation at finer scales (han the spacing
appears as noise. In both cases the structure of
the variation is not resolvable.

3. SCALE IN A MODELLING
ENVIRONMENT

3.1. Representing Data Seale

Given these considerations, a tool such as the
Open  Modelling Engine (OME} should
incorporate the idea of scale inio is data
representation, so that each data item: has a
scale associated with it. Models should also be
constructed with scale attributes, indicating the
range of scales over which they are applicable.
Consistency between model scale and input
data could then be enforced {or at least
advised) by the modelling systemn.

Each data item in the OME has associated
metadata that describes the structure of the
data. A regular time series for example is

represented . as - a. one-dimensional . array of .-

values, with metadata describing the start and
end datesftimes and the time step. Likewise

spatial data in raster form can be represented as
a two-dimensional array with metadata
specifying the location and spatial resolution,
Additional metadata items could also be
included,

For regularly sampled data, the scale s
represenied by the sampling interval in either
time or space. Other data are not so neatly
characterised and would need an explicit scale
description in its metadata. A uaiversal
measure of scale is required, and the resolution
with units of length or time is probably the
simplest. For an irregularly sampled data set
(such as a polygon coverage), the resolution i
the size of the smallest feature reliably
resolved by the data. For cartographic data, the
reselution of a paper map is typically | mm, so
the resolution corresponding to a particular
mapping scale is approximately the scale of the
map divided by 1000, For example, a
1:100 000 scale map has a resolution of about
100 m, while a 1:25000 scale map has a
resolution of about 25 m.

Mismatch in scale does not occur abruptly at
particular scales, but becomes progressively
more problematic as the difference between
scales increases. The comparison between
scales to enforce consistency would need to
reflect this progression, with information
passed back to the user or model builder about
the severity of scale mismatch. The scale
information associated with a model should

also contain “information™ o support g g

model could specify over what scales it is
applicable and then a wider range of scales
over which il could be applied with caution;
the degree of mismaltch increases as the scale
approaches the limits of this outer scale range.
In most cases the specification of these scales
requires the judgement of an experienced
scientist, and quantitative measures of scale
mismatch are yet to be developed.

3.2. Working Across Scales

in many instances the scale of the available
data does not match the scale of the available
models, or the scale al which modelling is
desired. The iwo simple answers to this
problem are to ignore the scale mismatch and
hope that the results are not too wrong, or to
avoid modelling at all. If users of a modelling
system are faced with only these choices, they
will tend to ignore the scale mismatches and
press on regardless. If the system prevents this,

(it will either not be used or the scale matching,

will be circumvented in some way.



More sophisticated approaches are to change
the scale of either the model or the data. To
change the scale of a model usually requires
modification of the model structure and
algarithms, and amounts to building a new
maodel. This can be a worthwhile undertaking
but  requires  considerable  effort  in
conceptualising, designing, implementing and
testing the model. Ideally, there would be a
rumber of models available for a particular
process at different scales, but this is not yet
the case. Changing the scale of data can
sometimes be a more fruitful approach
aithough, as noted previously, this change of
scale is frequently not a simple procedure
because of the non-linearities in the processes.

The wanster of information across scales is
called scaling and the problems associated
with it are  seale  issues.  Transferring
information to a coarser scale is called
upscaling while transferring to a finer scale is
called downscaling (Bloschl and Sivapalan,
1995). Using a point rainfall measurement to
estmate rainfall over a catchment is ap
example of upscaling. Inferring the spatial
pattern of seil water from catchment runoff is
an exampie of downscaling,

Blaschl and  Sivapalan {1993} describe
upscaling  and  downscaling as  two-step
processes (Figure 2). Upscaling firstly requires
distributing information from the fine to coarse
scale via a spatial or temporal pattern or a
- statistical-distribution; -secondly,-the pattern-is
aggregated to provide a single value at the
coarser scale. Downscaling is the reverse
process: disnggregation to a spatial or temporal
patiern or a statistical distribution, followed by
singling out {choosing one value from the
pattern or distribution) the desired fine scale
value. Singling out is a trivial operation and in
most cases aggregation is also trivial, so most

Fine scale
point value

Distributing/ \Singling out

of the work is associated with distributing
valuas for upscaling and disaggregating values
for downscaling. Note that both these
processes are associated with creating patterns
or distributions within space or time, either by
extrapotating from a fine-scale point value
{distributing as part of upscaling) or dividing
up a coarse-scale average value
{disaggregating as part of downscaling). In
most cases the actual patterns or distributions
are unkaown and must be synthesised from
some ancillary information. A modelling
system like the OME could provide a suite of
upscaling  and  downscaling  tols o
complement the suite of models it contains.
Implementation of this concept requires that
accepted or at least reasonable methods for
distributing, aggregating and disaggregating be
developed or adopted.

3.2.1. Aggregation

Aggregation converts a set of fine-scale
observations to a single coarse scale value.
Most of the time aggregation is a trivial
problem, such as converting daily to monthly
rzinfall which simply requires adding up the
daily rainfalis for each month,

More complicated aggregation operations are
required where the values being aggregated
coniribute to a non-linear process. So, as noted
hefore, while aggregation of rainfail amount
from daily to monthly is simple, determining

Tanveffective average rainfall raté todrive a T

rainfall-runoff or soil erosion model at a
menthly time scale is much more difficult.
Similarly, aggregating saturated  hydraulic
conductivity to a single catchment-average
value is difficult, and there are no universally
accepted methods for doing so. In some
sitzations, a coarse-scale eifective parameter
does not exist, in the sense that it is not

Pattern or statistical distribution

Upscaling of fine scale values Downscaling
Aggregating Disaggregating
>
¥ b Coarse scale average or effective value

Figure 2. Upscaling and downscaling as a two-step process. Most of
the work is in distributing and disaggregating (after Bléschl and

Sivapaian, 1995).



possible to represent the system behaviour
using a spatially averaged model with constant
parameters {Bloschl and  Sivapalan, 1993;
Sivapaian and Kalma, 1995; Beven, 1996).

3.2.2. Disapgregation

Disaggregation converts a single coarse-scale
value to a spatial or temporal pattern or a
statistical distribution of fine-scale values. This
requires the creation of a pattern or distribution
over which the aggregated value will be
broken up into fine-scale values.

Temporal disaggregation of rainfall is one
example, using weather generators
parameterised by the statistical properties of
the rainfali distribution. Methods are available
to generate hourly rainfall from datly data, and
daily rainfall from monthly data. In both cases,
statistical techniquesy are used that reguire
some additional parameters describing the
statistical properties of the fine-scale structure
of the data.

Spatial disaggregation of soil water content has
been performed using the wetness index
{Beven and Kirkby, 1979; Wood et af, 1990;
Bloscht and Sivapalan, 1995).

3.2.3. Distribution

Distribution converts a single fine-scale value
to a spatial or temporal pattern or siatistical
‘digeripution of fine-seale vatoes Trdiffers from
disaggregation by starting with a fine-scale
point value representing the conditions at only
one point in the domain of interest, rather than
a coarse-scale aggregate value representing the
conditions over the whole domain.

Techniques for distributing can be identical 1o
those for disaggregating.

4, IMPLEMENTAT.EON iN THE OPEN
MODELLING ENGIMNE

4.1. Sample model structure

Figure 3 shows a very simple spatio-temporal
model of soil water balance. Rainfall and
potential evapotranspiration from the Climate
data object are passed to the Surface warer
ohject, which models the dynamics of soii
water content and surface runoff, and the
Evapotranspiration  object  which  models

evaporation as a fuaction of potential

- evapotranspiration and soil water content. The- -

At object implements a delay of one time step,
making soil water content from a previous time
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step available to the current time step’s
evaporation calculation. The At object also
serves to break the circular loop of data flow.

The arrows in Figure 3 represent the flow of
data between the components, and it is on
these links that the OME can enforce
constraints on units, dimensions and scale of
the data.

Climate
cleta

Swrface
ezt

Figure 3. A simple water balance model
constructed within the Open Modelling Engine,
showing data flow links.

Mone
Walume
1 a4

Figure 4. Tree of units

4.1.1. Matching units

All data in the OME has units associated with
it, such as mm, ha, and kg. The simplest form
of scale enforcement is insisting an output of x
units can only supply an input of x units. This
is done when the link is defined by checking
the source and destination units and only
allowing the link if they match,

Matching units when defining a link is fairly
restrictive if the two models do not work in
exactly the same units. It is not difficult for

do this, the GME must have a description of



each unit, and how it relates to other units. For
example, the mm unit can be scaled to the m
unit by dividing by 1000, but it cannot be
converted to the kg unit. In Figure 4 a tree
defining groups of units and their scaling is
shown.

4.1.2. Matching dimensions

More advanced forms of data used in the OME
are temporal and spafial.

Temporal data has units describing each
element, and units describing the interval
between each element. For example, Rainfall
could be a 365 daily sequence of
measurements in mm units. Temporal data are
implemented as a one-dimensional array with
temporal metadata attached (o it

Spatial data are two-dimensional arrays with
metadata describing the location in space and
the dimensions of the array. For example, a
map of a catchment could have its top left cell
located at 35°S 147°E and consist of one
square Kilometre cells.

By checking the metadata for each array and
comparing it with the description of the input
to a maodel, the OME can prevent inappropriate
use of dara,

4.1.3. Matching scales

~-A-better solution-to-the-problem-of unmatched-

data is to develop a set of methods to
automatically up- or down-scale data where
appropriate.

Consider the problem where one model runs at
a daily timestep, producing daily data, which is

then fed into a monthly model. A tool to
aggregate the daily amounts is easy to

implement, but converting monthiy to daily
values requires a statistical disaggregation
model, such as a weather generator. While
these tools are not trivial, there are accepted
methods for some types of data scaling, and
such tools are planned o be implemented
within the OME and made available in object
tibraries.

5. SUMMARY

Scale is an imporiant issue in modelling, and a
generic modelling framework must include
tools to manage scaling issues. Facilities

should. be provided for. specifying. the. scale of -

data and the scales over which a model is
applicable, and mechanisms for manipalating
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the scale of spatial and temporal data should be
provided where possible,
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